Search results for "Polymer-matrix composite"

showing 10 items of 33 documents

A review on basalt fibre and its composites

2015

Abstract In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as po…

Basaltchemistry.chemical_classificationA. Metal-matrix composites (MMCs)ThermoplasticMaterials sciencePolymer-matrix compositeA. Ceramic-matrix composites (CMCs)Mechanical EngineeringThermosetting polymerMetal-matrix compositeIndustrial and Manufacturing EngineeringCeramic-matrix compositeA. Polymer-matrix composites (PMCs)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsCeramics and CompositesComposite materialA. Ceramic-matrix composites (CMCs); A. Metal-matrix composites (MMCs); A. Polymer-matrix composites (PMCs); Basalt fibreBasalt fibreComposites Part B: Engineering
researchProduct

Numerical experimental analysis of hybrid double lap aluminum-CFRP joints

2015

Abstract Due to their reliability and ease of assembly, both the adhesively bonded and the mechanical joints are commonly used in different fields of modern industrial design and manufacturing, to joint composite materials or composites with metals. As it is well known, adhesively bonded joints are characterized by high stiffness and good fatigue life, although delamination phenomena localized near the free edges may limit their use, especially for applications where corrosive environments and/or moisture can lead to premature failure of the bonding. In these cases, a possible alternative is given by the well-known mechanical joints. On the contrary, these last joints (bolted, riveted) requ…

musculoskeletal diseasesPolymer-matrix composites (PMCs)Materials sciencechemistry.chemical_elementIndustrial and Manufacturing EngineeringJoints/joiningSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineAluminiumRivetComposite materialJoint (geology)Stress concentrationCarbon fiber reinforced polymerbusiness.industryMechanical EngineeringFinite element analysis (FEA)DelaminationHigh stiffnessStructural engineeringchemistryMechanics of MaterialsMechanical jointCeramics and CompositesPolymer-matrix composites (PMCs); Mechanical properties; Finite element analysis (FEA); Joints/joiningbusinessMechanical propertie
researchProduct

Quasi-static behaviour and damage assessment of flax/epoxy composites

2015

Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…

010302 applied physicsMatériaux [Sciences de l'ingénieur]Materials sciencePolymer-matrix compositesComposite numberMechanical properties02 engineering and technologyEpoxy matrixEpoxy021001 nanoscience & nanotechnologyE-glass fibres01 natural sciences[SPI]Engineering Sciences [physics]Compressive strengthDamage mechanicsDamage mechanicsvisual_art0103 physical sciencesVolume fractionvisual_art.visual_art_mediumFlax fibresMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite material0210 nano-technologyQuasistatic process
researchProduct

Assessment of performance degradation of hybrid flax-glass fiber reinforced epoxy composites during a salt spray fog/dry aging cycle

2022

The main goal of this paper is the evaluation of the performances reversibility of hybrid composites when they are dried after being aged in salt-fog environment. To this aim, epoxy composites reinforced with flax and glass fabrics respectively in the internal and external laminae were at first exposed to salt-fog (i.e., identified as wet phase) and then stored in controlled conditions (i.e., identified as dry phase). The flexural properties evolution of these composites as well as their water uptake and contact angle were monitored at varying time of both phases. The flexural strength and modulus of hybrid composites is 23.4% (17.9%) and 15.5% (12.9%) lower than unaged ones after 30 (15) d…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of MaterialsMechanical EngineeringCeramics and CompositesIndustrial and Manufacturing EngineeringEnvironmental degradation Hybrid composites Mechanical testing Moisture desorption Polymer-matrix composites (PMCs)
researchProduct

Benchmarking of strength models for unidirectional composites under longitudinal tension

2018

© 2018 Elsevier Ltd Several modelling approaches are available in the literature to predict longitudinal tensile failure of fibre-reinforced polymers. However, a systematic, blind and unbiased comparison between the predictions from the different models and against experimental data has never been performed. This paper presents a benchmarking exercise performed for three different models from the literature: (i) an analytical hierarchical scaling law for composite fibre bundles, (ii) direct numerical simulations of composite fibre bundles, and (iii) a multiscale finite-element simulation method. The results show that there are significant discrepancies between the predictions of the differe…

TechnologyMaterials scienceComposite numberMaterials Science02 engineering and technologyFiber-reinforced composite0901 Aerospace EngineeringEngineering0203 mechanical engineeringFragmentationUltimate tensile strengthMicro-mechanicsCOMPUTED-TOMOGRAPHYLOAD-TRANSFERComposite material0912 Materials EngineeringMaterialsStress concentrationEPOXY COMPOSITESTRESS-CONCENTRATIONSScience & TechnologyDAMAGE ACCUMULATIONTension (physics)FIBER-REINFORCED COMPOSITESPolymer-matrix compositesExperimental dataMicromechanics021001 nanoscience & nanotechnologyFinite element methodEngineering Manufacturing020303 mechanical engineering & transportsWIDE FAILURE EXERCISEMechanics of MaterialsMaterials Science CompositesHYBRID COMPOSITES[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Ceramics and CompositesStrength0210 nano-technologyFINITE-ELEMENT0913 Mechanical Engineering
researchProduct

Green composites for fertilizer controlled release produced by compression molding and FDM

2023

Excessive fertilization causes ecological problems due to leaching issues. To solve this problem and promote agriculture sustainability an innovative green composite for controlled release fertilizers was produced by adding NPK fertilizer flour to a biodegradable polymer with or without Opuntia Ficus Indica (OFI) particles. Six formulations were produced and employed for the fabrication of devices both for compression molding (CM) and fused deposition modeling (FDM). Both fillers displayed a good dispersion in the composites, excellent adhesion with the polymeric matrix and effectively acted as reinforcement. The decrease of NPK release rate (up to 30 days) was achieved using whole composit…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymer-matrix composites Biocomposite 3D Printing Compression moulding green composites NPK controlled release
researchProduct

Properties evolution of flax/epoxy composites under fatigue loading

2014

International audience; The tension-tension fatigue behaviour of flax fibre reinforced epoxy matrix composites have been investigated for specimens having [0]12, [90]12, [0/90]3S and [±45]3S lay-ups. The Probabilized Stress-Number of cycles (P-S-N) curves have been determined for each laminate type. The measured stress and strain data allowed to quantify the evolution of the mechanical properties, i.e. stiffness, damping and permanent strain as a function of imposed cycles. Especially, the stiffening phenomenon of flax reinforcements oriented parallel to the loading direction has been confirmed. However, due to the competition between damage development and the fibre stiffening, the increas…

Polymer-matrix composites (PMCs)Matériaux [Sciences de l'ingénieur]Materials scienceFlax fibresPolymer–matrix composites (PMCs)FatigueDamage mechanics[ SPI.MAT ] Engineering Sciences [physics]/MaterialsModulusIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][SPI]Engineering Sciences [physics]Damage mechanicsDamage mechanics[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]medicineGeneral Materials ScienceMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite materialFatigueMechanical EngineeringStress–strain curveStiffnessEpoxy matrixEpoxyStiffeningMechanics of MaterialsModeling and Simulationvisual_art[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][ PHYS.MECA.MEMA ] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Fatigue loadingvisual_art.visual_art_mediumFlax fibresmedicine.symptomPolymer–matrix composites (PMCs)
researchProduct

PLA based biocomposites reinforced with Arundo donax fillers

2014

Abstract In this work, for the first time, a natural and almost inexpensive filler obtained by grinding the culms of Arundo donax was used to prepare PLA based biocomposites. The composites were prepared by melt compounding PLA with A. donax filler (ADF). The influence of the content and size of ADF on the morphology and on the mechanical and thermal properties of PLA–ADF composites was evaluated. Moreover, ADF was extracted from composites to evaluate the effect of processing on morphology and dimensions of the incorporated filler. Furthermore, the experimental elastic moduli of the biocomposites have been fitted, employing two theoretical models, i.e., Hill and Halpin–Tsai. The results sh…

Materials scienceMorphology (linguistics)Polymer-matrix compositebiologyExtrusionGeneral EngineeringArundo donaxengineering.materialbiology.organism_classificationGrindingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiFlexural strengthDifferential scanning calorimetryCompoundingFiller (materials)Ultimate tensile strengthCeramics and CompositesengineeringComposite materialSettore ICAR/08 - Scienza Delle CostruzioniMechanical propertieScanning electron microscopyElastic modulusComposites Science and Technology
researchProduct

TOWARD A DESIGN METHOD FOR METAL-COMPOSITE CO-CURED JOINT BASED ON THE G-SIFs

2013

Abstract In this work, a systematic study of the singular stress field in the zone where the interface intersects the free edge surfaces of bonded metal-composite co-cured joints, has been performed. The obtained theoretical, numerical and experimental results have permitted to detect the relationships between the joint configuration and the singular stress field, as well as to implement a new design method based on the so called generalised stress intensity factors. Such a proposed method allows the user to predict the static strength of a generic metal-composite co-cured joint, vs. the main influence parameters as the elastic modulus of the coupled materials, the overlap length, the taper…

Polymer-matrix composites (PMCs)Work (thermodynamics)Materials sciencebusiness.industryMechanical EngineeringComposite numberStructural engineeringIndustrial and Manufacturing EngineeringJoints/joiningStress fieldAnalytical modelingSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineLap jointMechanics of MaterialsCeramics and CompositesStrengthComposite materialbusinessElastic modulusJoint (geology)Stress intensity factorReliability (statistics)
researchProduct

Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocom…

2015

Hindered Amine Light Stabilizer (HAS) molecules have been covalently linked on the outer surface of multi-walled carbon nanotubes (CNTs), and the so-obtained multi-functional fillers (HAS-f-CNTs) have been compounded with Ultra High Molecular Weight Polyethylene (UHMWPE) to get composite films. The success of the grafting reaction of the HAS molecules has been confirmed through spectroscopic and thermo-gravimetric analyses. Morphological analyses reveal a segregated microstructure, in which CNT-rich channels surround the polymer domains. This morphology results in improved mechanical properties and appreciable electrical conductive features. More importantly, the addition of only 1 wt.% of …

Polymer-matrix composites (PMCs)B. Rheological propertiePhoto-oxidative resistanceMaterials scienceB. Mechanical propertieComposite numberCeramics and CompositeCarbon nanotubeNano-structureIndustrial and Manufacturing EngineeringA. Nano-structures; A. Polymer-matrix composites (PMCs); B. Mechanical properties; B. Rheological properties; Photo-oxidative resistance; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundA. Polymer-matrix composites (PMCs)lawA. Nano-structuresRheological propertieMechanics of MaterialComposite materialUltra-high-molecular-weight polyethylenechemistry.chemical_classificationB. Mechanical propertiesNanocompositeHindered amine light stabilizersA. Nano-structures; A. Polymer-matrix composites (PMCs); B. Mechanical properties; B. Rheological properties; Photo-oxidative resistance; Ceramics and Composites; Mechanics of Materials; Industrial and Manufacturing Engineering; Mechanical EngineeringMechanical EngineeringPolymerMicrostructureB. Rheological propertieschemistryMechanics of MaterialsA. Nano-structureCeramics and CompositesMechanical propertieStabilizer (chemistry)
researchProduct